Total Synthesis of Viridin and Viridiol

Yang Ji, [†] Zhengyuan Xin, [†] Haibing He, [‡] and Shuanhu Gao*, [†], [‡]

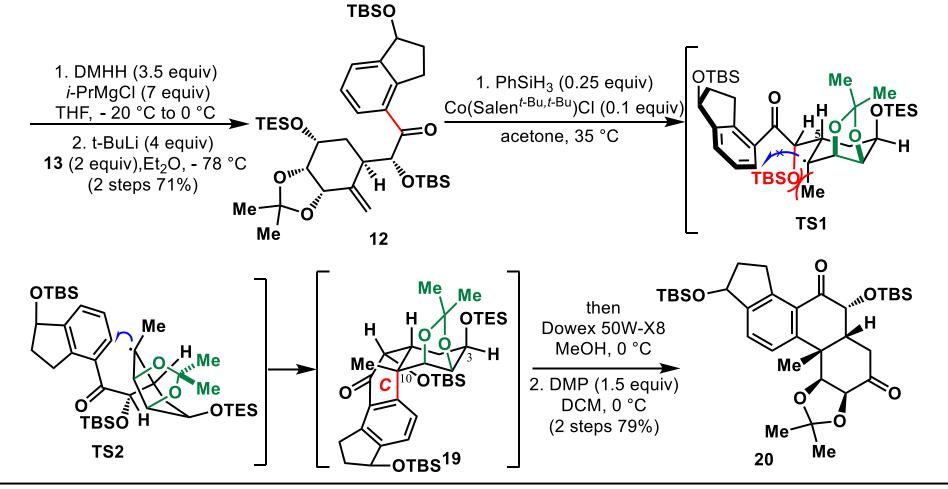
Supporting Information

O A B C E 20

Me
$$D_3$$
 HO OMe

Viridin (1)

Viridiol (4)

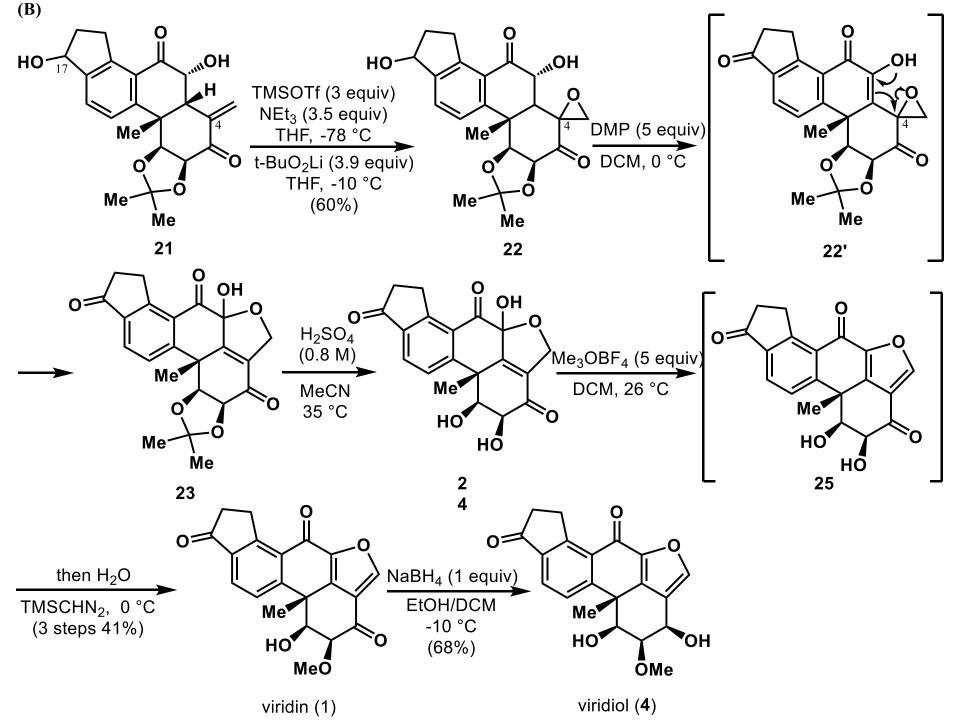

[†]Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, China

[‡]Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, China

Scheme 1. Retrosynthetic Analysis of Viridin

Scheme 2. MHAT Radical Cyclization To Construct the Tetracyclic Ring

Chelation transition model


Scheme 3. Total Synthesis of Viridin and Viridiol

Screening of the Pd-promoted dehydrogenation-cyclization condition:

entry	Pd	solvent	additive c	T. (°C)	time (h)	result
1 ^a	Pd(OAc) ₂	DMSO	-	80	2	10 (trace)
2 ^a	PdCl ₂	DMSO	-	80	24	N.R.
3 ^a	$Pd(TfA)_2$	DMSO	-	80	4	decompose
4 ^b	Pd(OAc) ₂	DMSO	-	80	2	10 (trace)
5 ^b	Pd(OAc) ₂	DMSO	-	40	12	N.D.
6^b	Pd(OAc) ₂	toluene	-	80	12	complex
7^b	Pd(OAc) ₂	DCE	-	80	2	10 (trace)
8 ^b	Pd(OAc) ₂	cyclohexane	-	80	12	N.D.
9^b	Pd(OAc) ₂	MeCN	-	80	2	10 (trace)
10 ^b	Pd(OAc) ₂	DMF	-	80	0.5	decompose
11 ^b	Pd(OAc) ₂	DCE	-	80	4	10 (trace)
12 ^b	Pd(OAc) ₂	1,4-Dioxane	-	80	2	N.D.
$13^{b,c}$	Pd(OAc) ₂	DCE	CaCO ₃	80	12	10 (trace)
14 ^{<i>b,c</i>}	Pd(OAc) ₂	DCE	Ag_2CO_3	80	12	10 (trace)
15 ^{b,c}	Pd(OAc) ₂	DCE	Ag ₂ O	80	22	N.D.
$16^{b,c,d}$	Pd(OAc) ₂	DCE	DMSO	80	2.5	10 (5%)
17 ^{<i>b,c,e</i>}	Pd(OAc) ₂	DCE	DMSO	80	2.5	10 (11%)

[a] Pd(OAc)₂ (1.0 equiv.); [b] Pd(OAc)₂ (2.4 equiv.); [c] additive (5.0 equiv.)

The proposed mechanism of Pd-promoted dehydrogenation-cyclization reaction:

But 00Li +
$$R^2$$

OR1

But 0

R2

OR1

But 0

OR1

But 0

HR2

谢谢