

pubs.acs.org/JACS

Communication

Asymmetric Total Synthesis of the Highly Strained 4β -Acetoxyprobotryane- 9β , 15α -diol

Wen Zhang, Zi-Xiong Zhou, Xu-Jiang Zhu, Zhang-Hua Sun, Wei-Min Dai, and Chuang-Chuang Li*

J. Am. Chem. Soc. 2020, 142, 19868.

Structural features:

Strained trans bicyclo[3.3.0]octane

7 Contiguous stereocenters:

two vicinal quaternary

No total synthesis reported

4 β -acetoxyprobotryane-**9** β ,**15** α -diol (6)

J. Am. Chem. Soc. 2017, 139, 5007.

Scheme 1. Retrosynthetic Analysis of 4β -Acetoxyprobotryane- 9β , 15α -diol (6)

Eschenmoser-Tanabe-type fragmentation

Synthesis of cyclic alkynones:

R = tosyl, 2,4-dinitrophenyl; $R^{1-2} = H$, alkyl; when $R^2 = H$, then the product is an alkynal, and when $R^2 = alkyl$, then it is an alkynone

Angew. Chem. Int. Ed. 2018, 57, 8744.

^{*a*} Reagents and condition: (a) Supporting Information and ref 4; (b) IBX, DMSO, 85 °C, 72%; (c) H_2O_2 , NaOH, H_2O -MeOH, 0 °C, 88%; (d) $H_2NCONHNH_2 \cdot HCl$, NaOAc, H_2O -EtOH, rt, 89%; (e) Pb(OAc)₄, CH₂Cl₂, -10 °C, 60%; (f) NaBH₄, MeOH, 0 °C, 87%; (g) *o*-iodoaniline, Pd(PPh₃)₄,

J. Am. Chem. Soc. 2010, 132, 1236.

Copper-Catalyzed Cross-Coupling of Diazo Compounds with Terminal Alkynes

Scheme 1 Copper-catalyzed cross-coupling of diazo compounds with terminal alkynes

DOI: 10.1055/s-0040-1705947

Transition Metal-Mediated [4+2] Cycloaddition Reactions

electronically dissimilar diene and dienophile

Chem. Rev. 1996, 96, 49.

Electronically similar diene and dienophile (electronically neutral dienes and dienophiles)

Org. Lett. 2016, 18, 4932.

Rh

[Rh(ethylene)₂Cl]₂

(17)

Ph

Ρh

Ph

i-Pr

CL

NHC

(L7)

*i-*Pr *i-*Pr

(S,R,R)-PN (L2)

(S,S)-Ph-Bod

(L4)

*i-*Pr

Me

чMе

Figure 1. Plausible reaction mechanism.

J. Am. Chem. Soc. 2006, 128, 12648.

a) Rationale for the stereochemical outcome of rhodium-catalyzed [4+2] cycloaddition

26

0

Ċ

27

8a

X = p -toluenesulfonate (TsO) or (1S) -(+) -10-Camphorsulfonate (CsO).

J. Org. Chem. 1991, 56, 6110.

Benzilic acid rearrangement P52

Mechanism:

Summary

- Achieved the first and asymmetric total synthesis of the highly strained 4β-acetoxyprobotryane-9β,15α-diol (6) via a linear sequence of 14 steps
- The synthetically challenging [6-5-5] tricyclic ring system of 6 was synthesized via an asymmetric Rhodium-catalyzed [4 + 2] cycloaddition reaction, followed by a unique and very mild benzilic acid type rearrangement
- The first application of a chiral rhodium complexcatalyzed [4 + 2]
 reaction in natural product synthesis