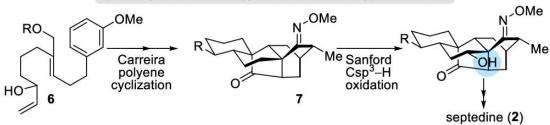
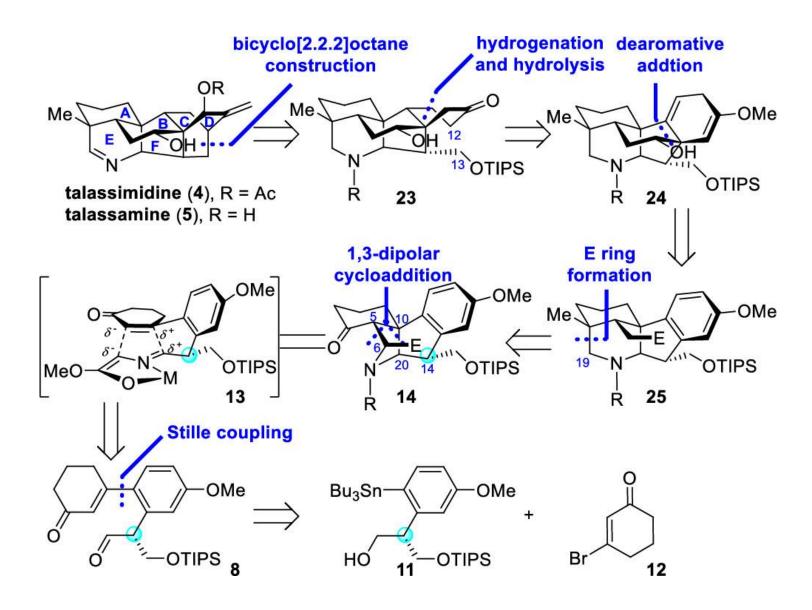

pubs.acs.org/JACS Article


Asymmetric Total Synthesis of Hetidine-Type C₂₀-Diterpenoid Alkaloids: (+)-Talassimidine and (+)-Talassamine

Quanzheng Zhang,[†] Zhao Yang,[†] Qi Wang, Shuangwei Liu, Tao Zhou, Yankun Zhao, and Min Zhang*


A) Selected subtypes of C₂₀-diterpenoid alkaloids and hetidine-type members

C) Our strategy for the hetidine-type alkaloids (this work)

Retrosynthetic Analysis of (+)-Talassimidine and (+)-Talassamine

A) Construction of A/F/C ring system of hetidine

Evans asymmetric aldol reaction

Optimization of the Asymmetric 1,3-Dipolar Cycloaddition

entry	$[O]^{a,b}$	amino ester source ^{c,d}	base ^e	yield (%) ^f	dr ^g	ee (%) ^h
1	[DMP]	$Ph_3P = NCH_2CO_2Me$	DBU	54	7:1	45
2	[DMP]	$Ph_3P = NCH_2CO_2Me$	Et_3N	45	5:1	54
3	[DMP]	$NH_2CH_2CO_2Me$	Et ₃ N	40	4:1	50
4 ⁱ	[DMP]	$NH_2CH_2CO_2Me$	Et_3N	<5		
5 ⁱ	[TEMPO]	$NH_2CH_2CO_2Me$	Et_3N	51	4:1	>99
6^i	[TEMPO]	$NH_2CH_2CO_2Me$	DIPEA	53	4:1	>99
7^i	[TEMPO]	$NH_2CH_2CO_2Me$	TMG	56	4:1	>99
8^i	[TEMPO]	NH ₂ CH ₂ CO ₂ Me	DBU	65	6:1	>99
9^i	[TEMPO]	$NH_2CH_2CO_2Me$	Cs_2CO_3	37	4:1	>99
10^i	[TEMPO]	$NH_2CH_2CO_2Me$	K_2CO_3	42	4:1	>99
11^i	[TEMPO]	$Ph_3P = NCH_2CO_2Me$	DBU	45	5:1	36

^a[DMP] oxidation: **30** (0.1 mmol), Dess–Martin periodinane (0.15 mmol), CH₂Cl₂ (3 mL), rt, 0.5 h, chromatography on silica gel. ^b[TEMPO] oxidation: **30** (0.10 mmol), TEMPO (0.01 mmol), KBr (0.20 mmol), NaClO (10% in H₂O, 0.20 mmol), NaHCO₃ (saturated aqueous solution, 2 mL), CH₂Cl₂ (3 mL), 0 °C to rt, 3 min, aqueous workup. ^c8, N₃CH₂COOMe/PPh₃ (0.11 mmol), CH₂Cl₂ (2 mL), 0 °C, 1 h. ^d8, NH₂CH₂COOMe·HCl (0.20 mmol), Et₃N (0.22 mmol), MgSO₄ (0.60 mmol), CH₂Cl₂ (2 mL), 0 °C, 1 h. ^eCrude **31**, AgOAc (0.01 mmol), base (0.11 mmol), toluene (2 mL), rt, 1 h. ^fIsolated yield of the major diastereoisomer from **30**. ^gRatio of yields of the two isolated diastereoisomers. ^hOf the major diastereoisomer; determined by chiral HPLC analysis. ⁱCrude **8** was used for the next step without chromatography purification.

Failed Attempts to Construct the B Ring

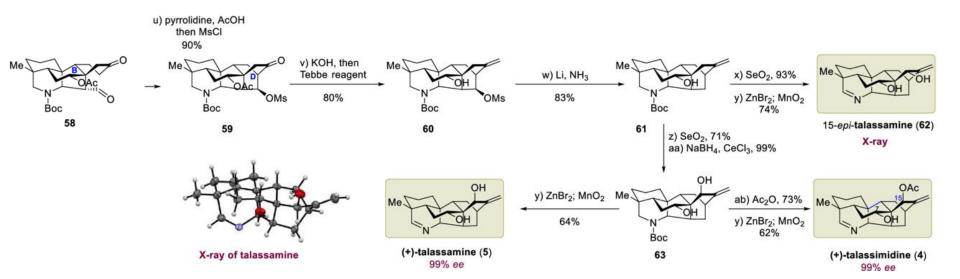
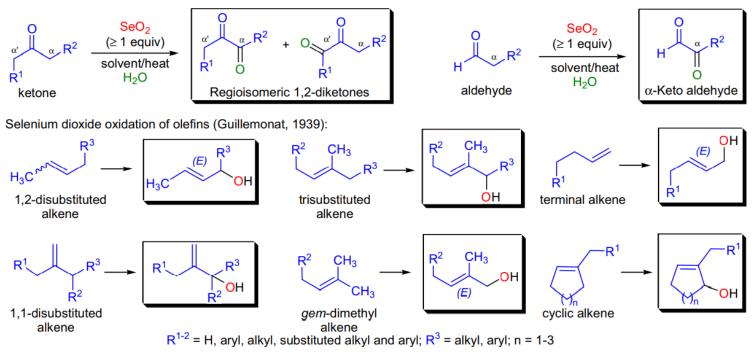

Preparation of 47

Table S2 Optimization of Metal-Catalyzed Carbene Dearomatization

Entry	Conditions	Yield (47 : 66)
1	Cu(OAc)₂, NaH, toluene, 110 ℃	30% (66)
2	Cu(OAc) ₂ , K ₂ CO ₃ , toluene, 110 ℃	93% (66)
3	Cu(acac) ₂ , K ₂ CO ₃ , toluene, 110 ℃	80% (66)
4	AgOAc, toluene, 90 ℃	<5% (66)
5	Rh ₂ (OAc) ₄ , K ₂ CO ₃ , toluene, 110 ℃	63% (47:66=2:1)
6	Rh ₂ (Oct) ₄ , K ₂ CO ₃ , toluene, 110 ℃	88% (47:66=5:1)
7	Rh(PPh ₃) ₃ Cl, K ₂ CO ₃ , toluene, 110 ℃	60% (47:66=1:3)
8	Rh ₂ (acac) ₂ CO ₂ , K ₂ CO ₃ , toluene, 110 ℃	78% (47 : 66 = 1 : 1)
9	Rh ₂ (Oct) ₄ , K ₂ CO ₃ , 1,4-dioxane, 90 ℃	86% (47:66=3:1)
10	Rh ₂ (Oct) ₄ , K ₂ CO ₃ , 1,4-dioxane, 130 ℃	85% (47 : 66 = 9 : 1)

Nucleophilic Ring Opening of the Cyclopropane

C) Assembly of hetidine core and completion of the total synthesis



Failed Attempts to Construct the D Ring by Alkylation

RILEY SELENIUM DIOXIDE OXIDATION

(References are on page 663)

Selenium dioxide oxidation of ketones and aldehydes (Riley, 1932):

Mechanism: 24-41

Oxidation of carbonyl compounds: