
A Chiral-Pool-Based Strategy to Access trans-syn-Fused Drimane Meroterpenoids: Chemoenzymatic Total Syntheses of Polysin, N-Acetyl-polyveoline and the Chrodrimanins

Fuzhuo Li and Hans Renata*

J. Am. Chem. Soc. 2021, 143, 18280.

1

Me

Me

2

Me

HO

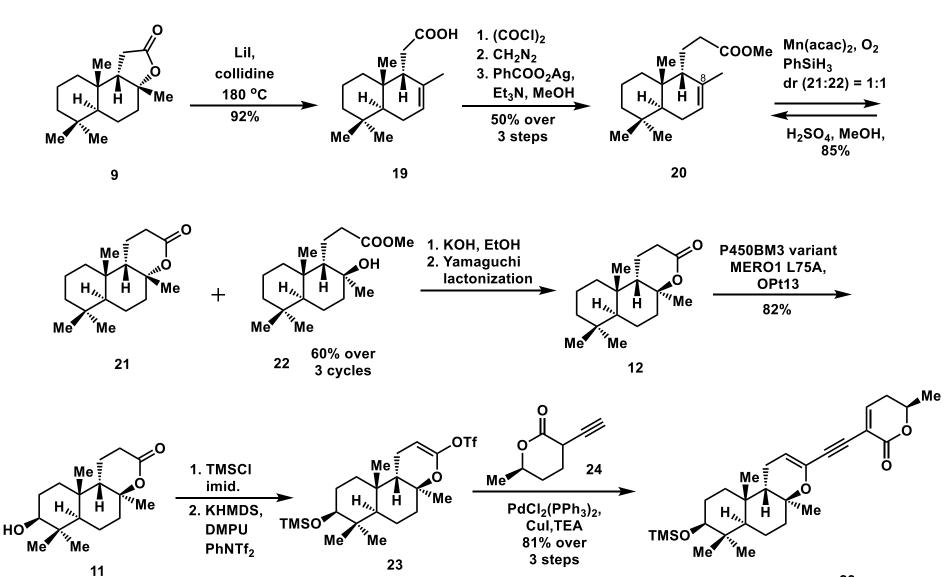
Me

Smith-modified Madelung indole synthesis (Smith indole synthesis):

$$R^{3} \xrightarrow{\text{II}} CH_{3} \xrightarrow{\text{R-Li}} (2.2 \text{ equiv}) \xrightarrow{\text{solvent}} \left[R^{3} \xrightarrow{\text{II}} \right] \xrightarrow{\text{NLi}} \left[R^{3} \xrightarrow{\text{NLi}} \xrightarrow{\text{NLi}} \left[R^$$

R¹ = H, alkyl, aryl, typically EDG; R² = alkyl, aryl; R³ = alkyl, O-alkyl, O-aryl, Cl, F; R⁴ = Me, Et; EWG = CN, CO₂R strong base: KOEt, NaOEt, NaNH₂, Na(O-alkyl); alkyllithium, aryllithium; solvent: hexanes, THF

Mechanism: 4,11


Mechanism of the Madelung indole synthesis:

Mechanism of the Smith indole synthesis:

Table S4. Condition Screening for Friedel-Crafts Cyclization on Model Compound S16

Entry	Conditions	Results
1	AlCl ₃ , DCM, 0 °C to rt	S17
2	BF₃·Et₂O, DCM, 0 °C	S17
3	TFA, DCM, 0 °C	Messy
4	SnCl ₄ , DCM, 0 °C	S17 (major)
5	FeCl ₃ , AgSbF ₆ , DCE, 80 °C	S17
6	BF ₃ ·Et ₂ O or SnCl ₄ , MeNO ₂ , 0 °C to rt	Messy
7	TFA, DCM, 0 °C	Messy
8	TfOH, DCM, 0 °C	S17
9	TFSI-H, DCM, rt	N.R.
10	PTSA, toluene, 125 °C	S17
11	montmorillonite K–10, DCE, 120 °C, mw	S18 (45%) ^a
		S19 (23%)

a. C-cyclization product **S18** is unstable.

ARNDT-EISTERT HOMOLOGATION / SYNTHESIS

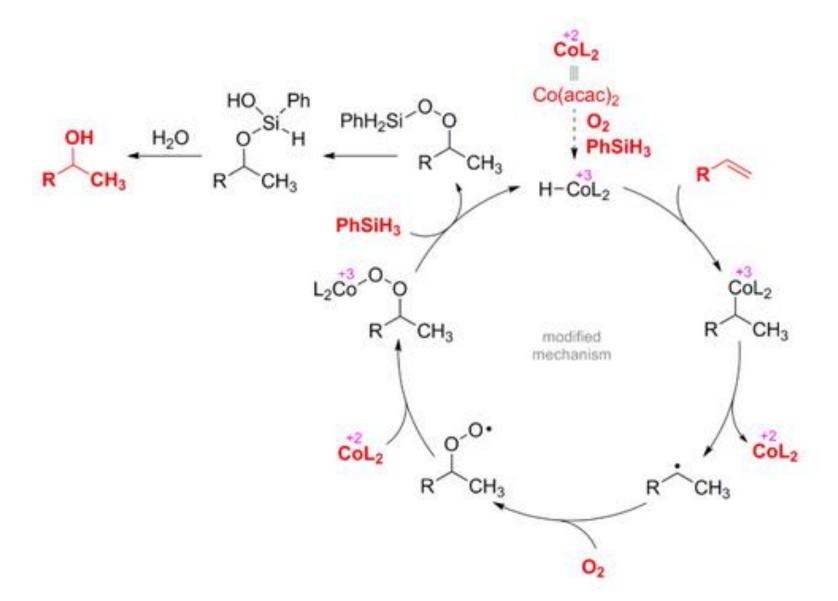
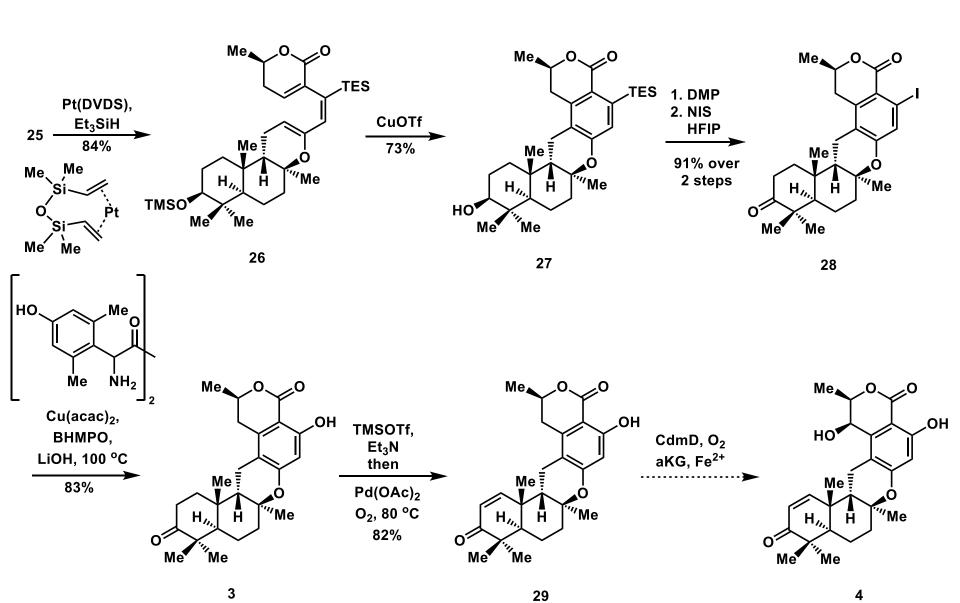



Table S5. Condition Screening of Mukaiyama Hydration on Compound 20

Entry	Deviation from Standard conditions	Ratio of S20 : 21 : 22 ^a	Yield of 22 (%)
1	None ^b	0.30 : 0.26 : 0.44	30
2	Solvent = THF	0.14 : 0.44 : 0.41	-
3	Solvent = EtOAc	0.24:0.35:0.41	-
4	Solvent = t -BuOMe	0.20: 0.37: 0.43	-
5	Solvent = hexane	033:0.25:0.42	-
6	Solvent = cyclohexane	0:0.54:0.46	-
7	cyclohexane, rt	0.15 : 0.40 : 0.46	32
8	Co(acac) ₂ , PhSiH ₃ , O ₂ , <i>i</i> -PrOH, rt	0.33:0.30:0.37	21
9	Mn(dpm) ₃ , PhSiH ₃ , O ₂ , <i>i</i> -PrOH, PPh ₃ , rt	0.32:0.23:0.45	32
10	Mn(acac) ₂ , PhSiH ₃ , O ₂ , <i>i</i> -PrOH, THF, rt	0:0.50:0.50	40

Ratio of products was calculated based on ¹H NMR analysis. b. Standard conditions were obtained from Shenvi's report.⁶

EWG
$$\longrightarrow$$
 R $\xrightarrow{R_3Si}$ $\xrightarrow{[Pt]}$ \xrightarrow{H} $\xrightarrow{R_3Si}$ $\xrightarrow{[Pt]}$ \xrightarrow{H} $\xrightarrow{Insertion}$ $\xrightarrow{Insertion}$ $\xrightarrow{R_3Si}$ $\xrightarrow{[Pt]}$ $\xrightarrow{R_3Si}$ $\xrightarrow{R_3Si}$ $\xrightarrow{[Pt]}$ $\xrightarrow{R_3Si}$ $\xrightarrow{R_3Si}$ $\xrightarrow{[Pt]}$ $\xrightarrow{R_3Si}$ $\xrightarrow{R_3Si}$ $\xrightarrow{[Pt]}$ $\xrightarrow{R_3Si}$ $\xrightarrow{R_3$

Scheme 1. Electronic influence on platinum-catalyzed hydrosilylations.