## Asymmetric Total Synthesis of Twin <br> Bufogargarizins A and B

Li-Ping Zhong, Rui Feng, Jing-Jing Wang, and Chuang-Chuang Li*


J. Am. Chem. Soc., 2023, 145, 2098.

Unusual [7/5/6/5] or [5/7/6/5] tetracyclic skeleton
$\square$ Highly oxygenated
$\square 10$ Stereocenters: 9 contiguous, 3 quaternary
$\square$ No Total Synthesis

Scheme 1. Retrosynthetic Analysis of Bufogargarizins A and B


sitolactone (6)
FGI $\uparrow$

(unstable)

bufogargarizin A (1)

unknown
a. retro-aldol/ $\stackrel{\text { tautomerism }}{\rightleftarrows}$
b. transannular aldol ${ }^{\text {reassembling }}$
unknown


FGI $\downarrow$
[5 + 2]
cycloaddition
unknown



Transition Metal Catalyzed [5 + 2] Cycloadditions of Vinylcyclopropanes and Alkynes

J. Am. Chem. Soc., 1995, 117, 4720.

Scheme 2. Asymmetric Synthesis of 13


## Van Leusen反应

酮和对甲苯磺酰甲基异腈（TosMIC）一锅法反应得到多一个碳的腈的反应。





Table S1. Optimization of Ru-catalyzed [5+2] cycloaddition reaction of vinyl ether cyclopropane-yne on compound 11 .


Table S1. Optimization of Ru-catalyzed [5+2] cycloaddition reaction of vinyl ether cyclopropane-yne on compound 11 .

| 13 | 0.2 eq. | TMS | $\mathrm{NaHCO}_{3}$ | DCM | 39 | 0.01 | Trace ${ }^{\text {a }}$ |
| :--- | :--- | :--- | :--- | :--- | :---: | :--- | :---: |
| 14 | 0.2 eq. | TMS | $\mathrm{NaHCO}_{3}$ | acetone | 55 | 0.01 | Trace $^{\text {a }}$ |
| 15 | 0.2 eq. | TMS | $\mathrm{NaHCO}_{3}$ | toluene | 110 | 0.01 | N.R. ${ }^{\text {a }}$ |
| 16 | 0.2 eq. | TMS | $\mathrm{NaHCO}_{3}$ | toluene | 55 | 0.01 | RSM |
| 17 | 0.2 eq. ${ }^{c}$ | TMS | $\mathrm{NaHCO}_{3}$ | toluene | 110 | 0.01 | Decomposed |

Note: N.D.: not detected; N.R.: no reaction; RSM: recovering starting materials; DCE: 1,2-dichloroethane; DPPP: 1,3-bis(diphenylphosphino)propane;
a. Stepwise procedure: The reaction was performed under 0.1 mmol substrate scale according to similar procedure as General procedure for vinyl ether cyclopropane-yne [5+2] reaction in Page S26;
b. One-pot sequence procedure: The reaction was performed under 0.1 mmol substrate scale according to similar procedure as Synthesis of compound 3 in Page S10;
c. $\left[\mathbf{R h}(\mathbf{C O})_{2} \mathbf{C l}\right]_{2}$ was used as a catalyst, the procedure is similar to the stepwise procedure.
Note: Compound $\mathbf{1 2}$ could be purified by neutral alumina column chromatography, the configuration of silyl enol ether was determined by 2D-NOESY spectrum analysis.


Table S2. Optimization of Ru-catalyzed [5+2] cycloaddition reaction of vinyl ether cyclopropane-yne reaction on general substrate


| Entry | Catalyst (eq.) | $\mathrm{R}^{1}$ Group | Additives (1.0 eq.) | Solvents | T/ ${ }^{\circ} \mathrm{C}$ | Yield/\% | 12 | 0.25 | TIPS | $\mathrm{NaHCO}_{3}$ | DCE | 25 | 81 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.40 | TIPS | $\mathrm{NaHCO}_{3}$ | DCE | 50 | 75 | 13 | 0.25 | TIPS | $\mathrm{NaHCO}_{3}$ | DCE | 15 | 72 |
| 2 | 0.25 | TIPS | $\mathrm{NaHCO}_{3}$ | DCE | 50 | 73 | 14 | 0.25 | TIPS | $\mathrm{NaHCO}_{3}$ | DCE | 0 | N.R. |
| 3 | 0.20 | TIPS | $\mathrm{NaHCO}_{3}$ | DCE | 50 | 65 | 15 | 0.25 | TIPS | $\mathrm{NaHCO}_{3}$ | DCM | 25 | 68 |
| 4 | 0.10 | TIPS | $\mathrm{NaHCO}_{3}$ | DCE | 50 | 67 | 16 | 0.25 | TIPS | $\mathrm{NaHCO}_{3}$ | $\mathrm{CDCl}_{3}$ | 25 | 53 |
| 5 | 0.05 | TIPS | $\mathrm{NaHCO}_{3}$ | DCE | 50 | 57 | 17 | 0.25 | TIPS | $\mathrm{NaHCO}_{3}$ | acetone | 25 | 45 |
| 6 | 0.25 | TMS | $\mathrm{NaHCO}_{3}$ | DCE | 50 | 60 | 18 | 0.25 | TIPS | $\mathrm{NaHCO}_{3}$ | DMF | 25 | 33 |
| 7 | 0.25 | TES | $\mathrm{NaHCO}_{3}$ | DCE | 50 | 66 | 19 | 0.25 | TIPS | $\mathrm{NaHCO}_{3}$ | toluene | 25 | N.R. |
| 8 | 0.25 | TBS | $\mathrm{NaHCO}_{3}$ | DCE | 50 | 74 | 20 | 0.25 | TIPS | - | DCE | 83 | 57 |
| 9 | 0.25 | TIPS | $\mathrm{NaHCO}_{3}$ | DCE | 100 | 55 | 21 | 0.25 | TIPS | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | DCE | 83 | N.D. |
| 11 | 0.25 | TIPS | $\mathrm{NaHCO}_{3}$ | DCE | 83\| | 67 | 22 | 0.25 | TIPS | DPPP | DCE | 83 | Trace |

## Scheme 3. Substrate Scope of the Ru-Catalyzed [5+2] Cycloaddition Reaction of Vinyl Ether Cyclopropane-yne



## Scheme 4. Asymmetric Total Synthesis of Bufogargarizin A



Scheme 5. Asymmetric Total Synthesis of Bufogargarizin B

bufogargarizin $\mathbf{A ( 1 )}$

bufogargarizin B(2)



(> 5 g produced)
Bufogargarizin B(2)

Summary of attempted substrates for retro-aldol/transannular aldol cascade
reaction.

bufogargarizin $A(1)$


24a
21

21a

S33


S34



There are several substrates (see above) we have tried for the retro-aldol/transannular aldol cascade reaction. In some substrates (such as 1, 24a, 21, 21a, S33), undesired C10 or C6 diastereoisomers were obtained. Under more harsh conditions, substrates 1, 24a, and 2 were decomposed. This would be due to some undesired reactions occurring, such as the pyranone ring opening, epoxide ring opening, or ester hydrolysis. For S34, C3 -elimination was the main by-reaction. The compound 28 was the only substrate with satisfactory stereoselectivity and yield after extensive investigation. Thus, we think that 28 with lower oxidation state and simpler functional groups can effectively avoid unnecessary by-reactions.

Table S5: Optimization of retro-aldol/transannular aldol cascade reactionsa,b


Note: a. N.D., not detected; N.R., no reaction; TBD, 1,5,7-triazabicyclo[4.4.0]dec-5-ene;
b. To a solution of S33, 28 or $\mathbf{S 3 4}(0.1 \mathrm{mmol}, 1.0$ equiv.) in solvent ( 2 mL ) was added base ( 0 .
$2 \mathrm{mmol}, 2.0$ equiv., unless otherwise stated), and the reaction mixture was stirred for 20 hours at the temperature as showed in table;
c. Isolated yield;
d. Isolated yield of S31.



S46
a. DMP, $\mathrm{NaHCO}_{3}$
b. DBU, THF;

LHMDS, $-98^{\circ} \mathrm{C}$
$65 \% 2$ steps


S47


S48

bufogargarizin B(2)

