

Research Articles

Angewandte International Edition www.angewandte.org

How to cite: Angew. Chem. Int. Ed. 2023, e202312599 doi.org/10.1002/anie.202312599

Natural Products Synthesis

Enantioselective Total Synthesis of (–)-Cephalotanin B

Zezhong Sun⁺, Shuang Jin⁺, Jianing Song, Lihua Niu, Fan Zhang, Han Gong, Xin Shu, Yunxia Wang, and Xiangdong Hu^{*}

Cephalotaxus Diterpenoids Intriguing Biological Properties Discovered in 2016 No Report on Its Synthesis

Congested Heptacyclic Skeleton

9 Consecutive Stereocenters

3 Lactone Units

(-)-cephalotanin B

Angew. Chem. Int. Ed., 2023, e202312599.

Retrosynthetic Analysis

g

← Step 1 Asymmetric Michael Addition

$$R = R_1 = Me$$
$$R_2 = Et$$
82% yield, -64% ee

Chem. Eur. J., 2008, 14, 6155.

RSC Adv., **2018**, *8*, 41699.

Step 1 Asymmetric Michael Addition

€

RSC Adv., **2018**, *8*, 41699.

Step 1 Asymmetric Michael Addition

N N

Ν

cat. V

Entry ^[a]	Catalyst	Conditions	Yield [%] ^[b]	ee [%]
1 ^[c]	cat. I	PhMe, 5% NaOH, rt	4	-9
2 ^[c]	cat. II	PhMe, 5% NaOH, rt	0	no reaction
3	cat. III	PhMe, 40 °C	69	98
4	cat. IV	PhMe, 40 °C	83	-94
5	cat. V	THF, 40 °C	17	-29

Step 1 Asymmetric Michael Addition

Entry ^[a]	Catalyst	Conditions	Yield [%] ^[b]	ee [%]	
6	cat. III	THF, 40 °C	95	98	
7	cat. III	1,4-dioxane, 40 °C	40	97	
8	cat. III	Et ₂ O, 40 °C	78	97	
9	cat. III	DCM, 40 °C	44	93	
10	cat. III	acetone, 40 °C	65	96	
11 ^[d]	cat. III	THF, 40 °C	93	97	

[a] Unless otherwise noted, all reactions were performed with 0.25 mmol of **13**, 0.275 mmol of **14** and 5 mol% catalyst in 2 mL solvent.

[b] Yield of the isolated product.

4

[c] 0.038 mmol of NaOH (5 % aq.) was added after the dissolution of the catalyst.

[d] The reaction was performed on a 20 g scale with respect to 13.

Step f&19 Pauson-Khand Reaction

R¹⁻⁶ = H, alkyl, aryl, substituted alkyl and aryl; <u>transition metal complex</u>: Co₂(CO)₈, Fe(CO)₅, Ru₂(CO)₁₂, Cp₂TiR₂, Ni(COD)₂, W(CO)₆, Mo(CO)₆, [RhCl(CO)₂]₂; <u>promoter</u>: NMO, TMAO, RSCH₃, high-intensity light/photolysis, "hard" Lewis base

Step f&19 Pauson-Khand Reaction

Mechanism: 48-62

The mechanism of the *Pauson-Khand reaction* has not been fully elucidated. However, based on the regio- and stereochemical outcome in a large number of examples, a reasonable hypothesis has been inferred.

Pauson-Khand Cycloaddition of Allenenes

Step i

4

Org. Lett., 2008, 10, 2385.

EXAMPLE 19 Reductive Capability of Co₂(CO)₈

• $CoH(CO)_4$ as a Reductant

Tetrahedron Lett., 2003, 44, 2775.

Chem. Lett., 2005, 34, 340.

• Reductive Deacyloxylation: Similar to SmI₂

 $RCHO + 2HCo(CO)_4 \longrightarrow RCH_2OH + Co_2(CO)_8$ (1)

J. Org. Chem., 1962, 27, 3698.

Org. Lett., 2008, 10, 2385.

Step g Alkyne Zipper Reaciton

J. Am. Chem. Soc., 1975, 97, 891.

Step 25 Epoxide-opening/Elimination/Dual-Lactonization Cascade

Conditions	Yield of 1 (from 26)
TiCl ₄ , DCM, 0 °C	decomposition
TMSOTf, DCM, 0 °C	decomposition
HNTf ₂ , DCE, 0 °C	decomposition
TFA, DCE, 90 °C	15%
PTSA, DCE, 90 °C	23%
PTSA, DCE, 65 °C	42%
PTSA, PhMe, 65 °C	13%
PTSA, PhH, 65 °C	51%
LDA, THF, -78 °C	decomposition
LiOH, THF, 40 °C	no reaction
Na ₂ CO ₃ , THF, 40 °C	no reaction