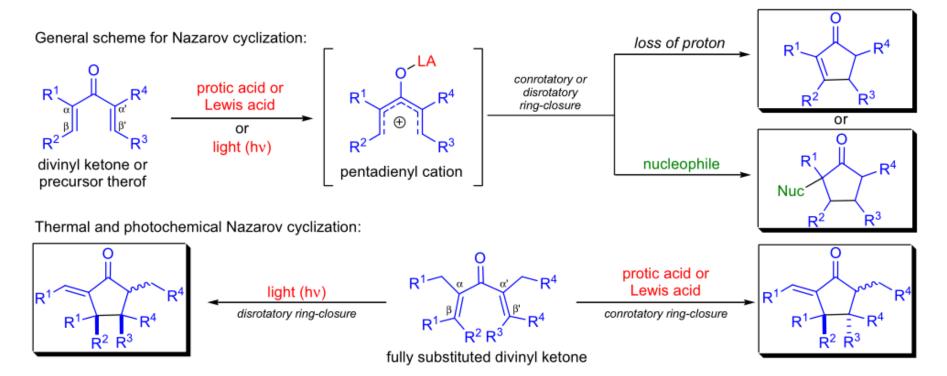


pubs.acs.org/JACS

Communication

Total Syntheses of Polycyclic Diterpenes Phomopsene, Methyl Phomopsenonate, and *iso*-Phomopsene via Reorganization of C—C Single Bonds

Jun-Jie Yin, Yun-Peng Wang, Jun Xue, Feng-Fan Zhou, Xing-Qian Shan, Rong Zhu, Kun Fang, Lei Shi,* Shu-Yu Zhang, Si-Hua Hou,* Wujiong Xia, and Yong-Qiang Tu*

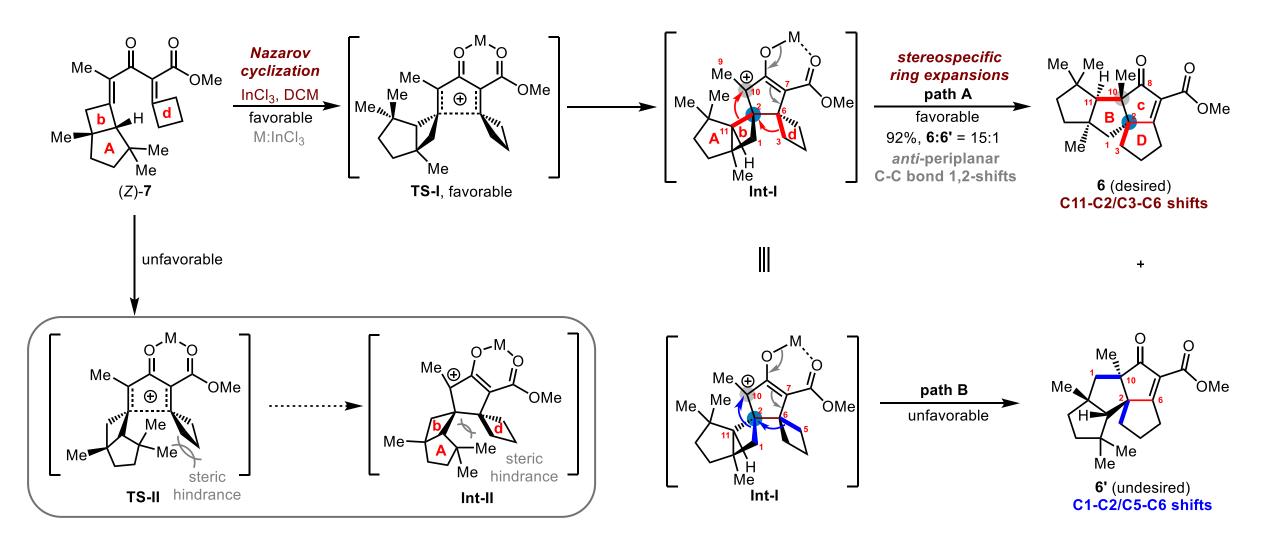

Scheme 2. Preparation of 5/5/5/5 Tetracycle via Tandem Nazarov Cyclization/Double Ring Expansions Reaction

HORNER-WADSWORTH-EMMONS OLEFINATION

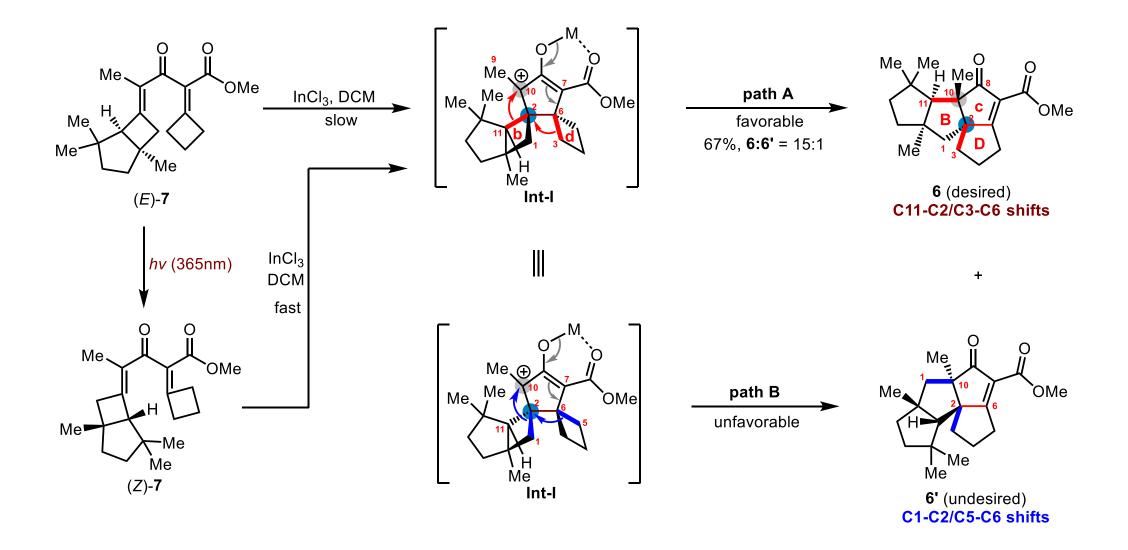
$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Mechanism: 47,9,48,11

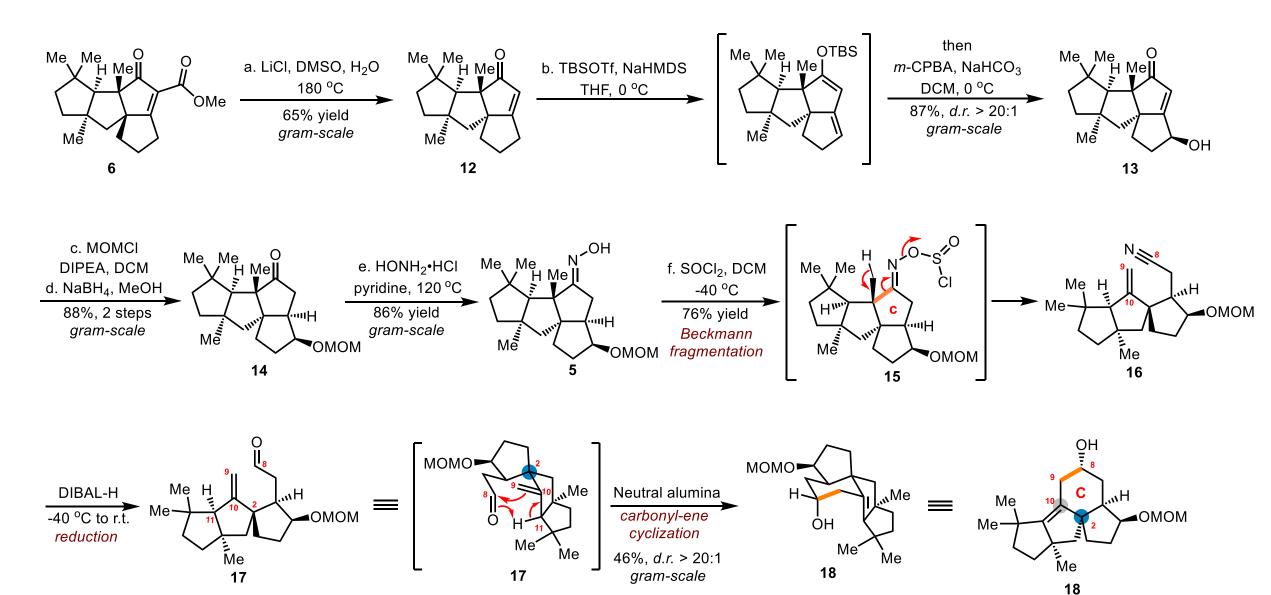
NAZAROV CYCLIZATION


Mechanism: 32-37,15,10

$$\begin{array}{c}
R^{1} : O : \longrightarrow H^{\oplus} \\
R^{1} : O : \longrightarrow$$


Table S1. Optimization of the Tandem Nazarov Cyclization/Double Ring Expansions Reaction with Compound 7 a

		7			6	(desired)	6' (undesired)		
Entry	Substrate	Reaction conditions	Conversion	Yield and ratio of 6:6'	17	(Z)- 7	InCl ₃ (0.1 equiv.), DCM, reflux	100%	87%,15:1
1	7 , <i>E</i> / <i>Z</i> 2:1	Al(OTf) ₃ (0.1 equiv.), DCM, RT		33%, 4.1:1	18	(Z)-7, 1.0 g	InCl ₃ (0.3 equiv.), DCM (0.5 M), 80°C, 12 h	100%	92%, 15:1
2	7 , <i>E/Z</i> 2:1	Sc(OTf) ₃ (0.1 equiv.), DCM, RT		42%, 3.2:1	ļ				
3	7 , E/Z 2:1	Zn(OTf) ₂ (0.1 equiv.), DCM, RT		n.d.	19	(E)- 7	InCl ₃ (0.1 equiv.), DCM, reflux	50%	43%, 15:1
4	7 , <i>E/Z</i> 2:1	Cu(OTf) ₂ (0.1 equiv.), DCM, RT		11%, 1.7:1	20	(<i>E</i>)- 7 , 2.0 g	InCl ₃ (0.3 equiv.), DCM (0.5 M), 80°C, 46 h	35%	20%, 15:1
5	7, E/Z 2:1	Fe(OTf) ₃ (0.1 equiv.), DCM, RT		49%, 2:1	21	(<i>E</i>)-7	InCl ₃ (0.1 equiv.), PTSA (0.1 equiv.) DCM, RT	100%	20%, 1.9:1
6	7, E/Z 2:1	Sn(OTf) ₂ (0.1 equiv.), DCM, RT		18%, 2.6:1	22	(E)- 7	$InCl_3$ (0.1 equiv.), (PhO) ₂ PO ₂ H (0.1 equiv.), DCM, RT	92%	46%, 2.5:1
7	7 , <i>E/Z</i> 2:1	In(OTf) ₃ (0.1 equiv.), DCM, RT		52%, 4.3:1	23	(E)- 7	FeCl ₃ (0.1 equiv.), DCM, reflux	81%	29%, 4.4:1
8	7 , <i>E/Z</i> 2:1	InCl ₃ (0.1 equiv.), DCM, RT		31%, 9.5:1	24 ^b	(<i>E</i>)- 7 , 1.0 g	hv (365 nm), DCM (0.2 M), RT, 10 h		n.d.
9	7 , <i>E/Z</i> 2:1	InCl ₃ (0.1 equiv.), AgBF ₄ (0.3 equiv.), DCM, R	RT	44%, 4.6:1	1				
10	7 , <i>E/Z</i> 2:1	InCl ₃ (0.1 equiv.), AgSbF ₆ (0.3 equiv.), CHCl ₃	, RT	72%, 3:1	25 ^c	(<i>E</i>)- 7 , 1.0 g	hv (254 nm), DCM (0.2 M), RT, 10 h		n.d.
11	7 , <i>E</i> / <i>Z</i> 2:1	InCl ₃ (0.1 equiv.), AgNTf ₂ (0.3 equiv.), DCM, I	RT	79%, 2.5:1	26	(<i>E</i>)- 7 , 0.24 g	InCl ₃ (0.3 equiv.), DCM (0.05 M), hv (365 nm), 80°C, 24 h	75%	58%, 15:1
12	7 , <i>E/Z</i> 2:1	InCl ₃ (0.1 equiv.), DCE, RT		40%, 9.6:1	27	(<i>E</i>)-7, 1.0 g	InCl ₃ (0.3 equiv.),DCM (0.21 M),	71%	67%, 15:1
13	7 , <i>E/Z</i> 2:1	InCl ₃ (0.1 equiv.), CHCl ₃ , RT		47%, 7.4:1		(<i>E</i>)-7, 1.0 g	hv (365 nm), 80°C, 48 h	7 1 76	07%, 15.1
14	7 , <i>E/Z</i> 2:1	InCl ₃ (0.1 equiv.), CCl ₄ , RT		n.d.			on a 0.2 mmol scale in solvent (1.0 mL) for		•
15	7 , <i>E/Z</i> 2:1	InCl ₃ (0.1 equiv.), DCM, reflux		53%, 15:1	isolated yields, while the ratio of 6:6' was determined by ¹ H NMR. ^b (<i>E</i>)-7 was recycled in 54% yield, (<i>Z</i>)-7 was isolated in 45% yield. ^c (<i>E</i>)-7 was recycled in 31% yield, (<i>Z</i>)-7 was isolated in 58% yield. n.d. = not detected.				
16	7 , E/Z 2:1, 2.0 g	InCl ₃ (0.3 equiv.), DCM (0.5 M), 80°C, 46 h	48%	40%, 15:1				, (2)	


Scheme S1. Proposed Mechanism for Formation of 6 and 6' from (Z)-7

Scheme S2. Proposed Mechanism for Formation of 6 and 6' from (E)-7

Scheme 3. Total Synthesis and Structure Revision of iso-Phomopsene

KRAPCHO DEALKOXYCARBONYLATION

carbanionic intermediate

EWG = CO₂-alkyl, CO₂-aryl, CN, CO-alkyl, SO₂-alkyl, SO₂-aryl; R¹⁻² = H, alkyl, aryl; R³ = Me, Et; MX = NaCN, KCN, LiCl, NaCl, NaBr, Nal, Lil·H₂O, Na₂CO₃·H₂O, Na₃PO₄·12H₂O, Me₄NOAc; solvent: DMSO, DMF, DMA, HMPT

product

Mechanism: 16,17,9,18,19

 α,α -Disubstituted esters:

RUBOTTOM OXIDATION

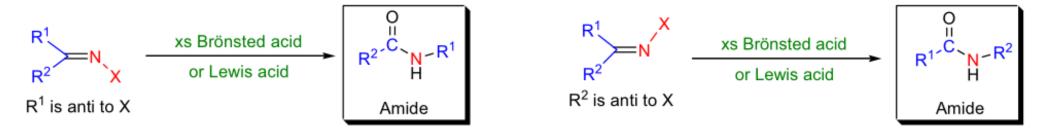

Asymmetric modification:

Rubottom & Hassner (1974):

OSiMe₃
R¹

$$R^2$$
 R^2
 $R^$

Oxidation of 2-trimethylsilyloxy-1,3-dienes:



 R^{1-3} = H, alkyl, aryl, substituted alkyl and aryl; SiR_3 = $SiMe_3$, $SiMe_2$ (t-Bu), $SiEt_3$; <u>solvent</u>: CH_2CI_2 , pentane, toluene; n = 1-3; chiral oxidant: Davis' chiral oxaziridine, Shi's D-fructose derived ketone/Oxone, (Salen)manganese(III)-complexes/NaOCl or PhIO

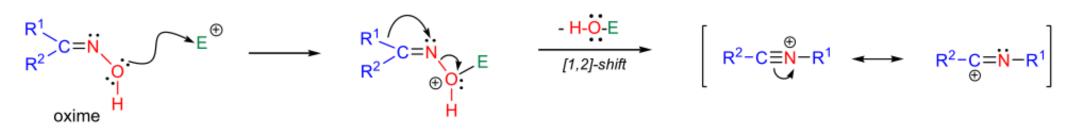
Mechanism:

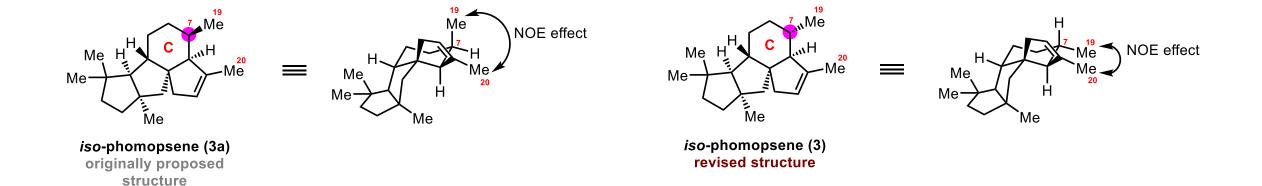
TMSO R1
$$\xrightarrow{-ArCOO}$$
 $\xrightarrow{-ArCOO}$ $\xrightarrow{R^1 + H}$ TMSO R1 $\xrightarrow{Hydrolysis}$ $\xrightarrow{R^2 + H}$ $\xrightarrow{R^2 + H}$

BECKMANN REARRANGEMENT

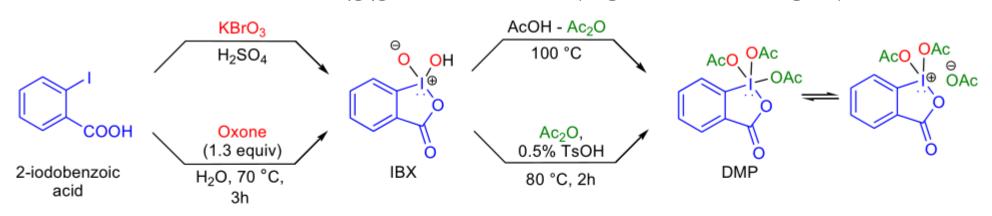
R¹, R² = alkyl, aryl, heteroaryl; X = OH, OTs, OMs, CI

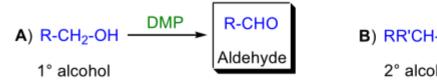
Mechanism: 28,19,22-24,29-31



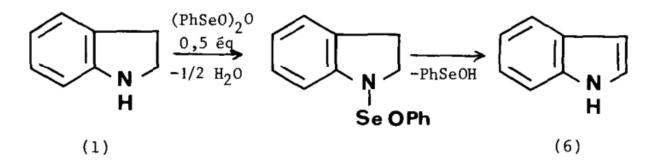

Table S2. Optimization of the Beckmann Fragmentation with Compound 5 a

Entry	Reaction conditions	Yield of 16	
1	TsCl (2.0 equiv), pyridine (0.5 M) 80 °C, 2 h	37%	
2	H ₂ SO ₄ (8.0 M, 3.0 equiv), 120 °C, 1 h	n.d.	
3	TFA (1.0 equiv), DCC (3.0 equiv) DMSO/Benzene(1:1 0.1M), RT, 12 h	31%	
4	TFA (1.0 equiv), CH(OMe) ₃ (2.0 equiv) THF (0.2 M), reflux, 12 h	22%	
5	Ac ₂ O (1.5 equiv), PTSA (1.5 equiv) MeCN (0.2 M), 60°C, 12 h	n.d.	
6	SOCl ₂ (1.0 eq), CHCl ₃ (0.1M), RT, 1 h	40%	


N	
Me H]H
Me	МОМО
Me	~
16	


7	SOCI ₂ (1.0 eq), DCM (0.1M), RT, 1 h	46%
8	SOCI ₂ (1.0 eq), DCM (0.1M), 0°C, 1 h	44%
9	SOCI ₂ (1.0 eq), DCM (0.1M), -40°C, 1 h	71%
10 ^b	SOCI ₂ (0.7 eq), DCM (0.1M), -40°C, 1 h	73%
11	SOCI ₂ (0.5 eq), DCM (0.1M), -40°C, 1 h	65%

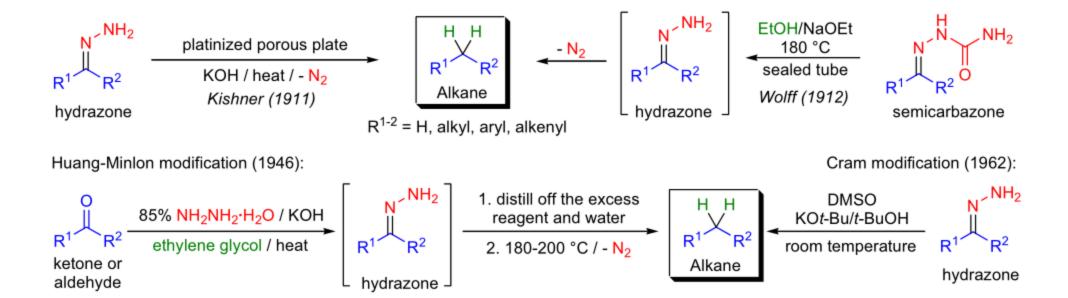
^a The reaction was run on a 0.2 mmol scale, all yields were isolated yields. n.d. = not detected. b The reaction was run on a 2.0 mmol scale.


DESS-MARTIN OXIDATION

Mechanism: 9,11,27,28

Scheme 4. Total Syntheses of Phomopsene and Methyl Phomopsenonate

Tetrahedron Lett., 1982, 23, 4949.


Table S3. Optimization of the 1,4-Addition with Compound 24 a

Entry	Reaction conditions	Yield		
		25	C3-epi- 25	
1	Cul (3.0 equiv) MeMgBr (3.0 M in Et ₂ O, 6.0 equiv)	n.d.	79%	
2	Cu(OTf) ₂ (3.0 equiv) MeMgBr (3.0 M in Et ₂ O, 6.0 equiv)	n.d.	44%	
3	CuTc (3.0 equiv) MeMgBr (3.0 M in Et ₂ O, 6.0 equiv)	n.d.	57%	
4	CuBr Me ₂ S (3.0 equiv) MeMgBr (3.0 M in Et ₂ O, 6.0 equiv)	n.d.	n.d.	
5	Ni(acac) ₂ (3.0 equiv) MeMgBr (3.0 M in Et ₂ O, 6.0 equiv)	n.d.	68%	
6	Cul (3.0 equiv) AlMe ₃ (1.0 M in toluene, 6.0 equiv)	n.d.	61%	
7	Cul (3.0 equiv) Me ₂ Zn (1.0 M in hexane, 6.0 equiv)	n.d.	n.d.	

^a The reaction was run on a 0.2 mmol scale in THF (1.0 mL) at 0 °C for 12 hours, all yields were isolated yields. n.d. = not detected.

OTMS
$$R^{1} \xrightarrow{\text{OCO}_{2}R^{3}} \xrightarrow{\text{Pd(OAc)}_{2}} R^{1} \xrightarrow{\text{Q}} R^{2} + R^{3} \text{OTMS} + CO_{2} + R^{2} + R^{3} \text{OTMS} + CO_{2} + R^{2} + R^{3} \text{OTMS} + CO_{2} + R^{3} + R^{3} \text{OTMS} + CO_{2} + R^{3} + R^$$

WOLFF-KISHNER REDUCTION

Mechanism: 25-32

The rate-determining step is the proton capture at the carbon terminal. This process takes place in a concerted fashion with the solvent-induced proton abstraction at the nitrogen terminus to form a diimide that undergoes a loss of N_2 .

Scheme 5. Enantioselective Syntheses of 1–3

Table S4. Condition Screening for Cyanogenation of Compound 24 a

Entry	Base	Υ	Yield		
Entry	Dase	27	C3-epi-27		
1	NaF	n.d.	32%		
2	KF	n.d.	<5%		
3	CsF	<5%	65%		
4	TBAF	n.d.	12%		
5	NaOH	71%	<5%		
6	кон	75%	<5%		
7	Na_2CO_3	<5%	66%		
8	K ₂ CO ₃	<5%	78%		
9	Cs_2CO_3	<5%	72%		
10	CsOAc	n.d.	<5%		

^a The reaction was run with **24** (0.1 mmol, 1.0 equiv.), TMSCN (0.3 mmol, 3.0 equiv.) and base (0.3 mmol, 3.0 equiv.) in 1,4-dioxane/ H_2O (9:1, 0.5 mL) at 95 °C for 6 hours, all yields were isolated yields. n.d. = not detected.

Martin's Sulfurane