nature communications

Total syntheses of Tetrodotoxin and 9-*epi*Tetrodotoxin

Xiangbing $Qi O^{2,4} \boxtimes$

Received: 9 January 2023

Accepted: 9 January 2024

Published online: 23 January 2024

First isolation of TTX in 1909

Structure solved in 1964

First synthesis in 1972

One of the most potent neurotoxins

Peihao Chen^{1,2,6}, Jing Wang ^{(2,3,4,6}, Shuangfeng Zhang², Yan Wang^{2,3,4},

Yuze Sun², Songlin Bai^{2,3,4}, Qingcui Wu², Xinyu Cheng^{2,5}, Peng Cao **D**^{2,4} &

Rigid Dioxa-adamantane Cage

Cyclic Guanidinium

9 Consecutive Stereocenters

Bridgehead N-containing Quaternary Center

 $R^1 = OH, R^2 = H$ Tetrodotoxin (1) $R^1 = H, R^2 = OH$ 9-*epi*Tetrodotoxin (1a)

Nat. Commun., 2024, 15, 679.

Previous Synthesis of Tetrodotoxin and Retrosynthetic Analysis

Retrosynthetic Analysis

Step 2Chiral Auxiliary Assisted Diels–Alder

Entry	Maleic anhydride (eq.)	Temperature(°C)	Solvent	Time(h)	(+)-11 ª [%]	11:11a
1	1.0	55	Neat	24	36.5	5:4
2	1.0	55	Toluene	24	16.8	1:1
3	1.0	55	MTBE	24	38.9	10:1
4	1.0	55	Isopropyl Ether	24	65.5	10:1
5	1.0	55	THF	24	13.8	1:1
6	1.0	55	CHCI3	24	11.4	1:1
7	1.0	55	CH3CN	24	17.1	5:6
8	1.0x2 ^b	55	Neat	48	68.5	5:1
9	2.0x2 ^b	55	Neat	48	71.1	10:3
10	4.0x2 ^b	55	Neat	48	39.7	5:6
11	1.0x2 ^b	55	Isopropyl Ether	48	86.8	>20:1
12	1.0x2 ^b	55	Isopropyl Ether	48	91.3°	>20:1

E Step 5 **Optimization of Decarboxylative Hydroxylation**

	$ \begin{array}{c} $		R*= s ^{sr} 0
Entry	Conditions	Yield [%]	d.r.
1	Mes-AcrClO ₄ /K ₂ HPO ₄ /O ₂ /blue LEDs then NaBH ₄	<5	.7.
2	EDCI/DMAP/1-Hydroxy-pyridinethione then [/] BuSH/O ₂ /Hg lamp then P(OEt ₃)	<5	-
3	EDCI/DMAP/NHPI then Ru(bpy) ₃ Cl ₂ / TEMPO/Hantzsch ester/blue LEDs	62 ^[a]	> 95:5
4	EDCI/DMAP/NHPI then Ru(bpy) ₃ Cl ₂ /TEMPO/ Hantzsch ester/blue LEDs	66 ^[b]	> 95:5

[a] d.r. > 95:5, 30 g scale.

[b] Isolated yield on 1 g scale using a circulating flow system.

Step 5 Barton Decarboxylation Reaction

 $\mathbf{ \mathbf{ } }$

Ru-Catalyzed Photoredox Decarboxylative Hydroxylation

Step 5

 \bigcirc

Org. Lett., 2018, 20, 4824.

SmI₂/H₂O/Amine-Mediated Fragmentation

c 0 15		itions		
Entry	Sml ₂ (equiv.)	Additives	16a [%]	16 [%]
1	8	HMPA ^[a]	88	-
2	12	Et ₃ N/H ₂ O ^[b]	<5	77(65%)
3	12	Et ₃ N/H ₂ O ^[c]	<5	55
4	20	pyrrolidine/H ₂ O ^[d]	20	18
5	3	-	-	58 ^[e]

[a] HMPA (10 eq). [b] Et_3N (24 eq)/H₂O (24 eq). The yield in the bracket is an isolated yield. [c] Et_3N (36 eq)/H₂O (36 eq). [d] pyrrolidine (60 eq)/H₂O (60 eq). [e] SmI₂ (3 eq), 55 °C, without purification followed by reduction using LiAlH₄. The yield is isolated yields for the two steps on decagram scale.

EXAMPLE 6 Step 8 Reduction of Esters Using SmI₂–H₂O

- Unique role of water as an additive for use with SmI₂
- Triethylamine could be replaced by a variety of amines, e.g. pyrrolidine

Chem. Commun., 2011, 47, 10254.

Step 11 Mitsunobu Reaction

Θ Step 14 Construction of Spiro α-Chloroepoxide with LiCHCl₂

Tetrahedron Lett., **1969**, *10*, 2181.

Step 16 Optimization of 1,2-Addition of Acetylide Anion to 20

РМВ	OTBDPS 20		OH N ₃ +	PMB-	O O O O H 22a
Entry	^[b] Conditions	Solvent, temperature (°C)	Time (h)	22a:22 ^[a]	Combined yields ^[a]
1	TMS-Li	THF, -78 °C	2	>20:1	80%
2	TMS — Li/ HMPA	THF, -78 °C	2	-	<10%
3	TMS Li/ ZnBr ₂	THF, 0 °C to r.t.	16	-	<10%
4	TMS-Li	Et ₂ O, -78 °C	2	>20:1	53%
5	TMS Li/ ZnBr ₂	Et_2O , 0 °C to r.t.	16	-	<10%
6	TMS — MgBr	THF, -78 °C to r.t	2	N.D.	N.D.
7	CaC ₂	THF, -78 °C	2	-	N.R.
8	Li NH ₂ CH ₂ CH ₂ NH ₂	THF, -78 °C	2	15:1	70%(66%)
9	MgBr	THF, -78 °C to r.t	2	N.D.	N.D.

• Step 16 **• Optimization of the Epimerization Conditions**

Entry	Conditions	Solvent, temperature (°C)	Time (h)	22a:22ª	Combined yields ^a
1	LiBH ₄	THF, r.t.	0.5h	1:1	87%
2	L-selectride	CH ₂ Cl ₂ , -78 °C to r.t.	16h	-	N.D.
3	L-selectride/ZnCl ₂	CH ₂ Cl ₂ , -78 °C to r.t.	3h	-	N.D.
4	LiAIH ₄	THF, 0 °C to r.t.	1h	-	N.D.
5	DIBAL-H	THF, -78 °C to r.t.	3h	1:2	25%
6	CBS cat./ BH ₃ •THF	THF, -15 °C	16h	-	N.D.
7	NaBH ₄	Dioxane:H ₂ O(10:1), r.t.	1.5h	1:2	76%
8	NaBH ₄	Dioxane:H ₂ O(10:1), 60°C	0.5h	1:2	85% (77% ^b)